A ring would mean a commutative ring with identity unless specified otherwise.

- 1. (15 points) State true or false.
 - (a) Every nonzero ring has a prime ideal.
 - (b) Every Euclidean domain is a Principal Ideal Domain.
 - (c) Every Unique Factorization Domain is a Principal Ideal Domain.
 - (d) A prime element in an integral domain is irreducible.
 - (e) Two distinct nonzero prime ideals are co-maximal ideals.

Solution:

- (a) T
- (b) T
- (c) F
- (d) T
- (e) F
- 2. Let \mathbf{R} be an integral domain. Which of the following are an integral domain? No justification needed.
 - (a) $\mathbf{R} \oplus \mathbf{R}$
 - (b) $\mathbf{R}[X]$, the polynomial ring over \mathbf{R} .
 - (c) $S^{-1}\mathbf{R}$ where S is a multiplicative subset of \mathbf{R} not containing 0.
 - (d) Any ring A such that \mathbf{R} is a subring of A.

Solution: $\mathbf{R}[X]$ and $S^{-1}\mathbf{R}$ are the only integral domains

3. Are the two rings $\mathbf{Q}[X]/(X^2-1)$ and $\mathbf{Q}[\mathbf{X}]/(X^2+1)$ isomorphic?

Solution: Let $I = (X^2 - 1)$ Notice that $(X - 1 + I).(X + 1 + I) = X^2 - 1 + I$. It follows that Q[X]/I is not an integral domain. On the other side $X^2 + 1$ is prime in Q[X], thus $Q[X]/(X^2 + 1)$ is an integral domain. Hence two rings $Q[X]/(X^2 - 1)$ and $Q[X]/(X^2 + 1)$ can not be isomorphic. \Box

4. (4+16=20 points) Define prime ideals and maximal ideals. Show that in a ring with finitely many elements every prime ideal is maximal ideal.

Solution: Let R be a commutative ring unit unit 1. Then an ideal $I \neq \{0\}$ in R is called *prime ideal* if $ab \in I$ implies either $a \in P$ or $b \in P$. An ideal I in R is called *maximal ideal* if there does any any idea J such that $I \subsetneq J \subsetneq R$.

Let I be a prime ideal in ring R, where R has only finitely many element. Then R/I is an integral domain which contains only finitely many element. It assures that R/I is filed. Hence I is a maximal ideal in R.

5. Let k be a field and R = k[x] be the polynomial ring. Let $S = \{1; x; x^2; \dots\}$ be a multiplicative subset. Show that the rings R[y]/(xy-1) and $S^{-1}R$ are isomorphic rings.

Solution: We define a map $\varphi: R[y]/(xy-1) \to S^{-1}R$ given by

$$\varphi(p(x,y)) = p(x,\frac{1}{x}) \quad \forall p(x,y) \in R[y].$$
(1)

It is straight forward to see that the map φ is a linear algebra homeomorphisom. By the first isomorphisom theorem, there exists $R[x]/\ker(\varphi)$ is isomorphic to $S^{-1}R$. Moreover, since $\varphi(xy-1) = 0$, thus the ideal $(xy-1) \subseteq \ker(\varphi)$. Therefore, it is sufficient to show that

$$(xy-1) \supseteq \ker(\varphi)$$

In order the show that, let $p(x,y) \in R[y]$ such that $p(x,\frac{1}{x}) = 0$. Now, one can write p(x,y) as

$$p(x,y) = (xy)^n q_1(x) + (xy)^m q_2(y),$$
(2)

where $q_1(x) \in K[x], q_2(y) \in K[y]$, and $n, m \in \mathbb{N} \cup \{0\}$. Then we can write from Equation (2) that

$$p(x, y) + I = q_1(x) + q_2(y) + I$$

This implies that

$$p(x,y) = q_1(x) + q_2(y) + h(xy - 1)$$

where h(0) = 0. Since $p(x, \frac{1}{x}) = 0$, we have

$$q_1(x) + q_2(\frac{1}{x}) = 0.$$
(3)

By applying fundamental calculus sincerely, we have $q_1(x) = 0 = q_2(x)$. Hence we have

$$p(x,y) = h(xy-1) \in \ker(\varphi).$$

This completes the proof.